
A Coalesced View of Software
Development

Ken Pugh (ken@kenpugh.com) (https://kenpugh.com)

You’ve read about agile development, BDD/ATDD, agile architecture, and many of the other facets of

agile. Many articles tend to discuss individual aspects, rather than putting them in a perspective of a

whole development picture. Over the past year and a half, I’ve been coalescing ideas on software

development. This view has emerged from my interactions with students, agile enthusiasts, and agile

coaches, trainers, and authors. I’ve listed at the end many of the people from whom I’ve gathered

different perspectives and feedback. This article merges in ideas that have appeared in my books on

BDD/ATDD, software development, programming, and interface-oriented design.

The example used here was selected as most of the readers will have bought tickets on-line. It has

simple and complicated parts. There are some details that will summarized. Many applications have

similar characteristics to the example.

Overall Development Flow
Some common steps in development below are shown in a linear sequence. This does not imply that

they occur only in that sequence. You can have feedback from later steps that cause a change in an

earlier step. The cycling around the steps can be rapid (seconds) or slow (minutes / hours). Everyone

adopts a flow that is appropriate for their context.

Here’s a sample developmental workflow (or development value stream) that shows a stream from

decision to deploy. At the end, you’ll see how the steps that are described fit into this stream.

 Decide – determine that a requirement (feature or story) is going to be implemented

 Detail – discover the details of a requirement

 Design – explore possible implementations

 Code / Test – write the necessary code to pass the functional tests

 Build – create the deployable component

 Test – run cross-functional / non-functional tests, and explore with tests

 Deploy – deploy component to production

 Execute – run in production

Detail Design
Code

Test
Build TestDecide Deploy Execute

The Example
The Tickzon company is considering presenting on-line events for a charge. The highest-level

description is:

As an event manager, I want to create events, sell tickets, and
receive the proceeds.

This high-level item could be called a capability or a feature, depending on your point of view. For the

purposes of this article, I’ll call it a feature.

Participants
There are many roles that participate in developmental value stream. In most places, these roles have

at least these three perspectives:

 The customer who provides the details of the requirements

 The developer who implements the requirements

 The tester who critically analyzes the requirements and the implementation

These perspectives may match an individual’s role or they may be perspectives of two or three different

people who are working on the feature. There could be many other stakeholders for a feature.

There may also be a role who determines in what sequence requirements are implemented (such as a

product manager).

The Hypothesis
The hypothesis for a feature describes the business value that is expected when it is in production. In

this example, it might be:

We think that presenting paid on-line events will increase learning
due to the stake in the game from the attendees as measured by on-
line tests given during and after the event.

The metric for this feature will be checked once the feature is in production. If the metric is met, then

the feature will be kept. If it is not met, then some options are:

 Modify the feature to see if an alternative will work (e.g. try something for lower expenses)

 Abandon the feature

Often software alone cannot achieve the expected business value. In this example, advertising may be

needed so that attendees buy tickets for the events. A hypothesis for advertising would be created and

that would be implemented by the appropriate team (e.g. marketing).

The Overall Operational Flow
There is an operational flow (or operational value stream) which shows how this feature initially works

by showing the activities involved in the event. The flow is the context for the stories that are going to

be developed (ala a story map). There may be alterations in the flow as the feature is used. The sample

flow is shown as linear, but flows can have loops or alternative paths.

Development Decisions
The team at some point needs to decide how to implement this feature. Some possibilities are:

 Use third party for entire flow.

 Use third party for portion of the flow (e.g., handling the sales) and create own implementation

for the rest.

 Create own implementation for everything.

Preferably the implementation will permit relatively easy substitution of one decision for another. Even

if there is a third party for everything, some of the next steps could be done so that the third-party

application can be tested to see if it meets the requirements.

High Level Scenarios
You can describe a feature or a story as a scenario. Scenarios are examples of the behavior that the

feature or story represents. I’ll discuss more about scenarios in a later step. These are scenarios for

some of the steps in the operational workflow.

Scenario: Create Event
Given event does not exist
When producer creates event
Then event is available for ticket sales

Scenario: Sell Tickets
Given event is available for ticket sales
When a purchaser purchases a ticket
Then purchaser receives ticket in the mail
And purchaser is charged for the ticket

Scenario: Receive Payment
Given event has been held
When producer requests payment

Create

Event

Workflow

Sell

Tickets

Hold the

Event

Receive

Proceeds

Then payment amount is transferred to producer

The Actors and the Context
The actors (e.g. the producer and the purchaser) and their relationship to the application can be shown

with a context diagram. At the highest level, the diagram might look like:

Here is a more detailed context diagram that shows the proposed application and the external

components it communicates with to produce the effects (payment, charge, ticket) that are in the

diagram above.

On-line Ticket Ordering

Purchaser

Event
Producer

Ticket

Charge

Payment

Exploration and Discovery
The above scenarios can be used as a starting point for creating more scenarios. These often come

from the exceptions that might occur when something goes wrong. These exceptional scenarios can be

discovered anywhere in the process, but the sooner they are discovered, the information can be used to

make better decisions. For example:

Scenario: Create Event for Date in the Past
Scenario: Sell a Ticket after Event is over
Scenario: Purchaser’s Purchase Information is Invalid
Scenario: Purchaser Does Not Receive a Ticket

Scenarios into Tests
Let’s add some example data to the above scenarios. The additional data can suggest missing

requirements. For instance, in creating these scenarios, the fact that the number of tickets should be

reduced by each sale was left out. One convention is to put the names such as Price and Number

Tickets in the left column when they are being supplied by an actor during the scenario and names on

the top row if the items already exist (from another scenario) or are being created (and potentially

passed to another scenario).

Scenario: Create event
Given event does not exist
When producer creates event
Name	Wonderful Time
Date	6/1/2021
Time	1:00 PM EDT
Number Tickets	100

On-line Ticket

Ordering

Purchaser

Event
Producer

Email
Server

Credit

Card

Processor

Database

| Price | $5.00 |
Then event is available for ticket sales
| Name | Date | Time | Number Tickets |
| Wonderful Time | 6/1/2021 | 1:00 PM EDT | 100 |

Scenario: Sell Ticket
Given event is available for ticket sales
| Name | Date | Time | Number Tickets |
| Wonderful Time | 6/1/2021 | 1:00 PM EDT | 100 |
When a purchaser buys a ticket
Event	Wonderful Time
Number Tickets	1
Email	sam@thisisonlyatest.com
Credit Card Number	4005550000000019
Then purchaser receives ticket in an email containing	
Name	Date
Wonderful Time	6/1/2021
And purchaser is charged for the ticket	
Credit Card Number	Item
4005550000000019	Wonderful Time
And number of tickets decreases	
Name	Number Tickets
Wonderful Time	99

Scenarios and tests are closely inter-related. A test is a scenario that is executed and all of the

expectations shown in the Then part are checked. If the expectations are met, the test passes. For the

first scenario, the check would be:

Then CHECK event is available for ticket sales
| Name | Date | Time | Number Tickets |
| Wonderful Time | 6/1/2021 | 1:00 PM EDT | 100 |

These scenarios form the external tests for the requirement. They represent the desired behavior and

are independent of the implementation. They could be executed manually or automatically (preferred).

Decomposition
High-level features are decomposed into stories that are independently developed. The acceptance

criteria for stories typically describes some behavior. The behavior can be written in Given/When/Then

form and thus form a test by checking the Then. The scenarios describe more detailed behavior of

steps within the workflow. They typically describe how a user uses the system (so the scenarios have a

parallel with the common use case).

Scenario: Create an order
Given event is available for ticket sales
| Name | Date | Time | Number Tickets |
| Wonderful Time | 6/1/2021 | 1:00 PM EDT | 100 |
When a purchaser selects a ticket to purchase
Event	Wonderful Time
Number Tickets	1
Email	sam@thisisonlyatest.com
Then an order is created	
Event	Number Tickets
Wonderful Time	1

Scenario: Pay for order with valid card
Given an order exists
| Event | Number Tickets | Price | Total |
| Wonderful Time | 1 | $5.00 | $5.00 |
When the purchaser pays
Name on Card	Sam Jones
Credit Card Number	4005550000000019
Expiration	12/2025
Security Code	123
Then credit card transaction is sent to processor	
Credit Card Number	Item
Security Code	
4005550000000019	Wonderful Time

Each of these scenarios has more detail than the overall scenario. Scenarios can be decomposed into

smaller scenarios. Each scenario specifies a behavior and thus a test for that behavior.

Create

Event

Workflow

Sell

Tickets

Hold the

Event

Create an

order

Pay for

order

Send

email

Receive

Proceeds

Select

event

Business Rules and Domain Terms
In developing scenarios, one often comes across domain terms that form part of ubiquitous language

shared between the triad. Many applications have business rules that are applied. Understanding and

checking these business rules is an important part of development. Running the tests for rules and

domain terms is typically fast, as there is no state that needs to be setup.

Scenario: Domain Term Number Tickets
* Number Tickets represents how many tickets are available or being sold
| Value | Valid | Notes |
| 0 | No | Must be at least 1 |
| 1 | Yes | |
| 100 | Yes | Maximum |
| 101 | No | Over maximum |

Scenario: Business Rule Discount
* Discount is given for buying more than one ticket
| Number Tickets | Discount Percentage | Notes |
| 1 | 0% | |
| 2 | 5% | Discount for 2 to 5 |
| 5 | 5% | |
| 6 | 10% | Discount for 6 or more |
| 100 | 10% | |

Mapping the Flow
The scenarios and business rules relate to steps in the workflow. This is a slightly different view of

story mapping (Patton). The scenarios and business rules are shown under the steps in which they take

place.

Minimum Marketable Feature / Minimum Business Increment
You do not have to implement every scenario for the feature to be released. At least one scenario

needs to be in place for each step in the workflow for that feature. The Minimum Marketable Feature

represents the fewest number of scenarios that are needed to be implemented to provide the business

value that the feature represents. Then the workflow can be changed by incrementally implementing

one or more additional scenarios or altering the requirements for an existing scenario.

The Detailed Context and Test Doubles
The expanded context diagram shows the external components which send the email, charge the card,

and store the event data. The context diagram shows interactions with external components or systems.

In order to run repeatable, fast tests on an application, you may need test doubles for those external

interactions, as shown in the following diagram. (Test doubles are often called mocks or other names).

The test doubles have the same interface as the real components (e.g., Email Server, Credit Card

Processor). The doubles can be programmed to return the data that the real component would return.

The double may be separate from the application (as they would be in production) or they may be

integrated into a test version of the application (using dependency injection or other techniques).

Sell

Tickets

Create an

order

Pay for

order

Send

email

Select

event

Pay with

invalid

card

Discount

Business

Rule

Pay with

valid card

Sequencing Development
One way to decide in which sequence scenarios should be developed is to start with a set of scenarios

that allow for a complete workflow. This has various names, including Tracer Bullet (Pragmatic

Programmers). It acts as an early check of the relationships and communication between the steps. It

also can be used as a check that the development pipeline is setup to easily deploy the application.

Checks and Tests and the Testing Matrix
The scenario tests which detail the requirements check that the application meets the requirements.

They are executed over and over as regression tests to check that new implementations don’t break

them. Unless a requirement changes, these checks do not change. So they are sometimes called

“checks” rather than “tests”. Passing these checks is necessary, but not sufficient to have a quality

application. An application needs to pass exploratory tests that investigate unexpected behavior,

usability tests that make sure users can navigate the flow easily, and cross-functional (aka non-

functional) tests for attributes as performance and security.

Functional Cross Functional

Customer Tests / Checks
(Scenarios, Business Rules,
Domain Terms)

Usability, Exploratory

Technical Tests/ Checks
(Components, Classes)

Performance, Security, etc.

On-line Ticket

Ordering

Purchaser

Event
Producer

Email
Server Test
Double

Credit Card

Processor

Test Double

Database Test

Double

The Testing Pyramid
The testing pyramid suggests the number of tests at each level of the pyramid. The original pyramid

used End-to-End, Integration, and Unit as the test types. One version from Google used Large, Medium,

and Small. Here is how the tests might be distributed in this pyramid among those categories based on

what they are testing.

Detailed Context and Architecture
The actors on the left side of the previous context diagram typically interact through a user interface.

The external components on the right side may interact via a request/response protocol, such as REST

or web services. A more detailed diagram shown below indicates how the scenarios can interact with

the application. This looks much like a clean architecture or a hexagonal architecture diagram (Martin,

Cockburn). Both the real external component and the test double for that component use the same

interface to the application.

Medium

Small

Step with UI (e.g., Sell Tickets)

Step without UI

Scenario with UI (e.g., Pay with Valid Credit Card)

Scenario without UI

Business Rules, Domain Terms

Workflow with UI

Large

Architecture and Design
The scenarios deal with external observable behavior that is required. The developers can select

whatever application architecture, user interface framework, and internal design meets their desired

qualities, such as maintainability, simplicity, consistency, testability. The other cross -functional (aka

non-functional) requirements must also be meet by the chosen architecture and design. The

architecture could be monolithic, microservices, or a combination of both.

The Scenario Flow
The diagram below shows a portion of the development flow where the scenarios, business rules, and

domain terms can be created and run as automated tests. Business rule and domain term tests are

typically implemented by small components which can be tested as part of the build. Some form of all

the tests may be executed in all environments.

Interface

User Interface

Scenarios

(Buy Ticket)

Business

Rules

(Discount)

DiscountDi

Domain Term

(Number Tickets)

Components
Credit Card

Processor

Credit Card

Processor

Test Double

Analyze Design
Code

Test
Build

Developer

Test

Environment

Scenarios

Domain Terms

Cross functional

tests

Exploratory

Usability

Manual Test

Environment

Quality Test

Environment

Business Rules

Complicated and Complex
The workflow/scenario approach shows one way to decompose a complicated flow into simple ones.

The flows represent the journey for a single user or a single set of events from the triad’s point of view.

The flow should be the same regardless of whether there is a single user or multiple users going through

it at the same time. It’s a development decision on how to ensure the implementation provides that

behavior. There are many forms of complex systems. One aspect is the having a shared resource that

has competition for it. For example, multiple buyers may be purchasing tickets at the same time. The

last step in the scenario was:

And number of tickets decreases
| Name | Number Tickets |
| Wonderful Time | 99 |

The implementation needs to ensure that the decrease is handled properly when there are multiple

purchasers concurrently going through the flow of purchasing tickets. Some shared resource issues

may be mostly a development issue. However, some issues may suggest a change in the workflow. In

this instance, further Triad discussion may suggest three alternatives:

 Having reservations, where tickets are reserved for a brief period of time until they are paid for

and unreserved if they have not been paid within that time.

 Allowing overbooking

 Informing the purchaser that the tickets are no longer available since they did not complete the

order quick enough

The outline of a scenario that describes the last alternative might be:

Given there are 100 tickets
When 101 purchasers are simultaneously trying to order them
Then 100 purchasers get their tickets
And 1 purchaser is disappointed

The INVEST Criteria
Scenarios align well with the INVEST criteria (Wake):

 I– Independent – each scenario can stand alone, although they may have to be implemented in

a sequence

 N – Negotiable – the decomposition of a scenario may result in additional scenarios that might

be delayed

 V – Valuable – the scenarios help provides the value in the feature that they represent

 E – Estimable – scenarios can estimated

 S – Small – scenarios are small

 T – Testable – the scenario is the test

Perspectives on Agile
One agile perspective revolves around people (teams, relationships, etc.). A second perspective

considers schedules (sprints, backlogs, etc.). The workflow with the associated scenarios as described in

this article are a third perspective on how value is delivered to the customer.

Applicability
This developmental flow represents one view that works, that may not be applicable to your

environment. The flow is more applicable to systems where most stories represent a change or

addition to a workflow requested by the customer, rather than experimental systems. The stories may

represent cross-functional (aka non-functional) requirements that apply to parts or the whole of a

workflow.

Change in Scenarios
If a scenario needs to change, then you alter the scenario. The test should fail since the implementation

has not be altered for the requirement change. If the test passes, then you’ll need to examine carefully

the underlying test code and production code to see what is the reason.

If you do not have a scenario / test for a requirement that is changing, then you should first write one

for the current requirement.

Run the test for the scenario and trace the implementation components that are executed to implement

the scenario. You can do this for all scenarios to determine which ones are affected when you make a

change in an implementation component. As a quick preliminary check during development, you

should run the tests for those scenarios.

Who’s Responsible?
Here are some possibilities. How you organize responsibilities is dependent on the system and your

organizational size:

 One team is responsible for all the components necessary to implement the event ticketing

workflow.

 Multiple teams are responsible for components for individual steps of the workflow (e.g. Sell

Tickets, Receive Proceeds), and share responsibility for components used by multiple steps.

 Multiple teams are responsible for components for individual steps and other teams are

responsible for components used by those steps, if they are shared with other workflows.

Flow of Value

People Teams

Organization
Schedule

Sprints

Kanban

If there are multiple teams, they are usually in a workflow group (team of teams, Agile Release Train,

etc.). Typically, most workflows have a common infrastructure (database, operating system, etc.) and a

common developmental infrastructure (source code control, build, etc.). Who provides these is a

development/operations decision.

Component Triads
If there are separate executable components (e.g., services or microservices), or shared libraries, then

the triad concept can be applied to these components using slightly different terminology:

 Consumer – user(s) of a service/library

 Provider – developer of a service/library

 Tester – critically analyzes a service/library and its implementation

Workflow

Components

Infrastructure
Communications Persistence

Steps
Create

Event

Sell

Tickets

Hold the

Event

Receive

Proceeds

The component triad specifies the behavior of a component. They can use scenarios written in the

implementation language, in Gherkin, or in another form – whichever is most effective.

Within a component, there is a triad of perspectives, often represented by two developers who are pair

programming

As Jerry Weinberg once said, “If you can’t come up with three solutions to a problem, you don’t

understand the problem.” When considering how to implement a component, you can come up with

Quality

Consumer

Components

Component

vQuality

Test

three possible implementations. Then compare them to see which one might be the most appropriate.

When coding that one, you might discover that a different one or some combination might work better.

Component Interaction
Components can interact with each other in at least two ways. Communication can be orchestrated -

one component directly communicates with another either via a method call or a message. The

response or result of that message may be received synchronously or asynchronously. Alternatively,

interactions can be choreographed, which is more decentralized – for example, one component can

generate an event that other components listen for and perform appropriate actions. Orchestrated

behavior is declarative; choreographed behavior is reactive.

Event / Response Behavior
Another way to specify the behavior of an application is with an event/response listing. An event is

something that occurs externally to an application, such as user pushing a button, a message received

from another system, a time period expiring, and so forth. The response is how the application reacts

to the event. For example, the payment process might have an event/response list as:

Event Response

User checks out System requests payment information

Payment information submitted System sends information to third party

Third party approves payment System sends email to customer

Third party denies payment System requests alternate payment

Event / response behavior can also be specified for choreographed components.

The response may be dependent on some state in the application. For example, the number of times

that a “Third party denies payment” might be kept and if that number exceeded a limit, the response

would be different, such as “System says to contact representative”.

Summary
This article is an initial effort to tie together many of the aspects in agile development- from the value

stream to scenarios to development. The topics will be explored in separate articles. I welcome your

feedback and input.

Orchestrated Choreographed

Event Communication

Events

Acknowledgements
I gather inspiration from many sources. These are some of the people from whom I’ve received ideas

and thoughts that went into this article.

Jeff Patton, Ward Cunningham, Eric Evans, Scott W. Ambler, Alistair Cockburn, Robert Martin, Gojko

Adzic, Seb Rose, Aslak Hellesøy, Gáspár Nagy , Lisa Crispin, Janet Gregory, Matt Wynne, Joshua

Kerievsky, Al Shalloway, Gerard Meszaros, James Bach, Michael Bolton, Daniel Terhorst-North, Larry

Constantine, Lucy Lockwood, Michael Feathers, Martin Fowler, Ellen Gottesdiener, Andy Hunt, Dave

Thomas, Cem Kaner, Craig Larman, Bas Vodde, Grigori Melnik, Bret Pettichord, Mary Poppendieck, Tom

Poppendieck, Donald Reinertsen , Rebecca Wirfs-Brock , Jerry Weinberg, James Whittaker, Karl Wiegers,

George Dinwiddie, Rob Myers, Bob Galen, Luke Hohmann, Johanna Rothman, GeePaw Hill, Elisabeth

Hendrickson, James Grenning, Kevlin Henney, Doc Norton, Jeff Langr, James Shore, James Coplien, David

Scott Bernstein, Ron Jeffries, Chet Hendrickson, Dean Leffingwell, James Grenning , Allen Holub,

Thomas Owens, Kent Beck, William Wake, Mike Cohn

