ATDD/BDD in Context with DDD and Clean Architecture

Using Acceptance Test-Driven
Development /
Behavior Driven Development in Context
with Domain Driven Design and Clean
Architecture

Ken Pugh

September 2022

Objectives

« Overview of Acceptance Test-Driven Development / Behavior Driven
Development

 Learn how ATDD/BDD works with Domain Driven Design

* Learn how automating ATDD/BDD scenarios for testing works with
Hexagonal / Clean Architecture

Ken Pugh

ATDD/BDD, TDD, BVDD, Lean, Scrum, Kanban,
Technical Excellence

Over 2/5 century of software development
experience

Co-author SAFe® Agile Software Engineering
Author of seven books, including:

* Lean Agile Test-Driven D¢
Better Software Through Collaboration

Helping teams deliver software

* Prefactoring: Extreme Abstraction, Extreme
more effectively

Separation, Extreme Readability

* Interface Oriented Design

Overall Rule

There are exceptions to every statement, except this one

4
2"d Qverall Rule Perspective
Context is everything
Everything exists in a context
Everything is always true in some context O
5
6

© 2017-2022 Ken Pugh




ATDD/BDD in Context with DDD and Clean Architecture

Introduction

What are Behavior / Acceptance Tests

External behavior of system
Tested to be acceptable

@ Inputs/Outputs

State Changes

Enterprise
Database

Definitions

* Acceptance criteria
* General ideas

* Acceptance tests
* Specific tests that either pass or fail
* Implementation independent

Triad

Customer

 Customer perspective — provides the requirements (desired behavior)
 Developer perspective — implements the requirements (behavior)
« Tester perspective — critically analyzes requirements and implementation

10f
9 10

ATDD/BDD
« Behavior Driven Development (BDD) Goal of ATDD/BDD:

* Define behavior of system which is tested e b e e
« Acceptance Test Driven Development (ATDD) p g

* Create tests for acceptable behavior of the system with

Shared understanding
11 12
11 12

© 2017-2022 Ken Pugh




ATDD/BDD in Context with DDD and Clean Architecture

BDD/ATDD and TDD
SN a T
O (3 Internal Behavior
& K / N AN
© Y X \
= / N % \\
Customer
External Behavio Test
- /
ﬂ {— Components
T~ /
\ ( ) /
N\ —
\ X /
\ o /
NG ) 7

Software Development Workflow

)

Code /

Decide [-»| Detail [ Design [—¥| Test

—»| Test |—»| Deploy [

Deliver

13 14
Hypothesis Driven Development
* We think that an application that keeps track of manual test runs
will decrease effort in running the tests by 5% as measured by the
number of hours expended on manual testing.
Decide
15 16
Feature / Story
* As a user, | want to be able to record test results for a manual test,
so that | know which tests have been run at any time.
High Level Detalil
17 18

© 2017-2022 Ken Pugh




ATDD/BDD in Context with DDD and Clean Architecture

System Design Document Big Picture Workflow
Create a Create a Report on
Test Script Test Run a Test Tests
20
19 20
Context Diagram
Actor %
Input / Output ‘\ , Inputs from Other Systems

Context is Everything

N

Outputs to Other Systems

22

21

22

Generic Example

X

Commands
Views

Stores
Requests

Database . i
Retrievals Responses ‘ Another System

23

Layers of Context Example

Box
Customer _
—>

24

23

© 2017-2022 Ken Pugh

24




ATDD/BDD in Context with DDD and Clean Architecture

Test Reporter Context

Time
Clock
Test Runner

Test Recorder

Story Details

File System
% Test Creator
Database
25
25 26
Smaller Picture Workflow Behavior
> Types of behavior:
Create a Create a T Report on * Flow
Test Script Test Tests * Domain Terms
1 * Business Rules
[ \>
Execute Record Record
Test Script Result Comments
28
27 28
Scenario for Flow Main Flow - Outline
Scenario is one path through a use case
(main or exception or alternative)
Scenario: Run a test successfully
Scenario: <Name> Given test exists
Given <current state> (preconditions) When test is run
When <event or action (ala Domain Event)occurs> Then test is updated with results of the run
Then <new state, output, or both> (post-conditions)
29 30

© 2017-2022 Ken Pugh




ATDD/BDD in Context with DDD and Clean Architecture

Main Flow Version 1 (1)

Scenario: Run a test successfully
Given test exists

| Issue ID | Name | Runner | Last Result
12345 | Enter test result | | Failure |

Date Last Run | Date Previous Result |

Never | Never |

File Path | Comments |

EnterTest. feature | |

Main Flow Version 1 (2)

And test is run

| Result | Success |
Comments | Works great |
Runner | Ssam |

| |

Date Time Oct 1, 2022, 12:30:01 AM

31

32

Main Flow Version 1

Then test is now
| Runner | Last Result

Issue ID | Name
12345 | Enter test result | Sam | Success |

Date Last Run | Date Previous Result |
Oct 1, 2022, 12:30:01 AM | Never |

File Path | Comments |
EnterTestResult.feature | Works great |

Scenarios Yield Information

* Domain Terms (ala Value Objects)
* Entities

* Composite of attributes which are all domain terms
* Entity Collections

* Typically have persistence (ala Repositories)

33

34

One Way To Implement

* Domain Terms declared as
* Domain Term Types (abstract data types) having
* toString()
* From String : constructor(String value) / Class.parse(String value)
* May have multiple Domain Terms of same Domain Term Type
* Entity
* Attributes are Domain Terms
* EntityDTO
« Attributes are all strings — initialized to appropriate values
* To communicate with external world
* Entity Collection
* Persistence Could use List<MyType> or Collection<MyType>

35

Domain Term

Scenario: Domain Term Result
* Result values are
| Success |

| Failure |

35

© 2017-2022 Ken Pugh

36



ATDD/BDD in Context with DDD and Clean Architecture

Domain Term Type

Scenario: Domain Term Type IssueID
# Domain Term “Issue ID” is this type
* IssuelID must be five characters and digits without

spaces
| Value | Valid | Notes |
| 12345 | Yes | |
| A1234 | Yes | |
| 1 123 | No | Has spaces |
| 1234 | No | Too short |
| 123456 | No | Too long |

Business Rules
Rule: Update Test from Test Run
Variation: Test Run Result Different From Previous

Variation: Test Run Result Same as Previous
Variation: Test Has Never Been Run

37

38

Business Rules (and Calculations)

Scenario: Update Test from Test Run

* Update Test from Test Run

| 0ld Last Result | Old Date Last Run | O0ld Date Previous
Result | Result | Date Time | New Last Result | New Date
Last Run | New Date Previous Result |

| Failure | Never | Never
| Success | Oct 1, 2022, 12:30:01 AM | Success | Oct 1, 2022,

12:30:01 AM | Never |

Business Rule Zoomed

Scenario: Update Test from Test Run
* Update Test from Test Run
0ld Last Result | Old Date Last Run

Failure | Never

0ld Date Previous Result

Never

Result | Date Time |
Success | Oct 1, 2022, 12:30:01 aM |

New Last Result | New Date Last Run New Date Previous Result

| Success | Oct 1, 2022, 12:30:01 AM | Never
| Success | Oct 1, 2022, 12:30:02 AM | Success | Oct 1, 2022, | Success | Oct 1, 2022, 12:30:01 AM | Never |
12:30:02 AM | Never |
| Success | Oct 1, 2022, 12:30:02 AM | Never
| Failure | Oct 1, 2022, 12:30:03 AM | Failure | Oct 1, 2022,
12:30:03 AM | Oct 12022 12:30:02 AM |
Clean / Hexagonal Architecture Time Clock Text on Outside / Objects on Inside

Domain Term /
(IssuelD)

File System
Scenarios = Gompenents /
(Run Test)
C:;>
Business Rules ———) - Database
(Update Test with
TestRun)

a1

Text

TestDTO

{ a3,
Object

e — Components
(Test) ’ Database
Text
(TestDTO)

42

41

© 2017-2022 Ken Pugh

42




ATDD/BDD in Context with DDD and Clean Architecture

Design

Test Doubles for External Dependencies

* Why?
* Slow
* Expensive
* Random
* Changeable by others

43

44

Test Doubles

X

Test Runner

Test Recorder

% Test Creator

Configuration

User
Identity
Test
Double Time
Clock
Test
Double

File System

Database
Test
Double?

45

How To Create Test Doubles

* Collection:
* Interface for Collection (internal)
« Test double version might use List, Map, etc., persist with file
* Production version calls SQL
* SQL Interface (external)
* (e.g.JDBC) with different database just for testing

45

46

Power of Three (1)

* Test
* TestRun
* Third party

* Who should be responsible for updating Test from TestRun?

Power of Three (1)

* Sorting the tests

* Who should sort? Display [»| Core [—»| Database

47

© 2017-2022 Ken Pugh

48




ATDD/BDD in Context with DDD and Clean Architecture

Power of Three (2)

* Filtering the test

* Who should filter? Display [» Core [-»| Database

Code / Test

49

50

Main Flow Version Two (1)

Scenario: Run a test successfully
Given test exists

| Issue ID | Name | Runner | Last Result |
12345 | Enter test result | | Failure

Date Last Run | Date Previous Result |

Never | Never |

File Path | Comments |

EnterTest. feature | |

Main Flow Version Two (2)

And value for runner is

| sam |
And value for current date is

| Oct 1, 2022, 12:30:01 aM |
When test is selected

| Issue ID | 12345
And test is run

| Result | Success |

| Comments | Works great |

Main Flow Version Two (3) Other Flows
Then test is now .
| Issue ID | Name | Runner | Last Result | Seamamles Hakl & e
| 12345 | Enter test result | Sam | Success
Scenario: Add a test with same identifier is not allowed
| Date Last Run | Date Previous Result |
| Oct 1, 2022, 12:30:01 AM | Never [ Scenario: Run a test multiple times
| File Path | Comments
| EnterTestResult.feature | Works great |

© 2017-2022 Ken Pugh




ATDD/BDD in Context with DDD and Clean Architecture

Background Run for Every Scenario

Background:
Given configuration values are:
| Variable | Value |
| rootFilePath | C:\Users\KenVl\...\TestRecorder\target |
Given file exists

| File Path | Contents

| EnterTest.feature | Select test \n Run it \n Check result |

Test

55 56
Behavior Test Pyramid Other Examples
Workflow with Ul
* A Coalesced View of Software Development
Step with Ul (e.g Run Test) * Requirement Driven Development and Test-Driven Development
Large - * A Behavior Perspective on Development
S WiditEn Ul * The Auction Sniper — An ATDD/BDD Approach
. Scenario with Ul (e.g., Run Test Successfully) * The Mars Rover Kata and BDD/ATDD
Medium * Building Collaboration with Visible Tests
Scenario without Ul * Use Your Ubiquitous Language in Your Design
) . * The Gilded Rose Kata from a Gherkin Perspective
Small Business Rules, Domain Terms
* A Dollar Kata
57 58
Resources

ken.pugh@pugh-killeen.com SU |ementa r

https://www.linkedin.com/in/kenpugh/ p p y

Twitter @kpugh

http://acceptancetestdrivendevelopment.com ( http://atdd.biz )
59 60

© 2017-2022 Ken Pugh




ATDD/BDD in Context with DDD and Clean Architecture

Behavior

* Functional Behavior
* Display Behavior
« Display rules
* Appearance
* Connection between functional behavior and display behavior

Testing Approaches

* Parallel Testing
« Use another instance (start up an environment) that starts the
same state - for speeding up tests
* Could set actual clock with different instances

61 62
61 62
Terms Guidelines
« Validation — right format * Technology — is everything at the right level?
« Verification — right existence
* Text or not to Text — outside is text, inside are objects
« Avoid strings in executable code
* When you’re abstract, be abstract all the way
* Primitives are primitive — use them to construct objects
* Strings are primitive
* Use names for constants in executable code
* Null on null — use “Null Objects”
63 64
63 64
Test Double Alternatives Why ATDD/BDD?
* Streamline communication
* Access alternatives * Decrease rework
- Strategy - * Increase productivity
* in code - interface with alternatives and factory * Raise customer satisfaction
* Internal or external configuration
* In build — use a different jar file
* Is there a third?
65 66

65

© 2017-2022 Ken Pugh

66




